Testing Your Code

Testing your code is very important.

Getting used to writing the testing code and the running code in parallel is now considered a good habit. Used wisely, this method helps you define more precisely your code’s intent and have a more decoupled architecture.

Some general rules of testing:

  • A testing unit should focus on one tiny bit of functionality and prove it correct.
  • Each test unit must be fully independent. Each of them must be able to run alone, and also within the test suite, regardless of the order they are called. The implication of this rule is that each test must be loaded with a fresh dataset and may have to do some cleanup afterwards. This is usually handled by setUp() and tearDown() methods.
  • Try hard to make tests that run fast. If one single test needs more than a few millisecond to run, development will be slowed down or the tests will not be run as often as desirable. In some cases, tests can’t be fast because they need a complex data structure to work on, and this data structure must be loaded every time the test runs. Keep these heavier tests in a separate test suite that is run by some scheduled task, and run all other tests as often as needed.
  • Learn your tools and learn how to run a single test or a test case. Then, when developing a function inside a module, run this function’s tests very often, ideally automatically when you save the code.
  • Always run the full test suite before a coding session, and run it again after. This will give you more confidence that you did not break anything in the rest of the code.
  • It is a good idea to implement a hook that runs all tests before pushing code to a shared repository.
  • If you are in the middle of a development session and have to interrupt your work, it is a good idea to write a broken unit test about what you want to develop next. When coming back to work, you will have a pointer to where you were and get back on track faster.
  • The first step when you are debugging your code is to write a new test pinpointing the bug. While it is not always possible to do, those bug catching tests are among the most valuable pieces of code in your project.
  • Use long and descriptive names for testing functions. The style guide here is slightly different than that of running code, where short names are often preferred. The reason is testing functions are never called explicitly. square() or even sqr() is ok in running code, but in testing code you would have names such as test_square_of_number_2(), test_square_negative_number(). These function names are displayed when a test fails, and should be as descriptive as possible.
  • When something goes wrong or has to be changed, and if your code has a good set of tests, you or other maintainers will rely largely on the testing suite to fix the problem or modify a given behavior. Therefore the testing code will be read as much as or even more than the running code. A unit test whose purpose is unclear is not very helpful is this case.
  • Another use of the testing code is as an introduction to new developers. When someone will have to work on the code base, running and reading the related testing code is often the best they can do. They will or should discover the hot spots, where most difficulties arise, and the corner cases. If they have to add some functionality, the first step should be to add a test and, by this means, ensure the new functionality is not already a working path that has not been plugged into the interface.

The Basics

Unittest

unittest is the batteries-included test module in the Python standard library. Its API will be familiar to anyone who has used any of the JUnit/nUnit/CppUnit series of tools.

Creating test cases is accomplished by subclassing unittest.TestCase.

import unittest

def fun(x):
    return x + 1

class MyTest(unittest.TestCase):
    def test(self):
        self.assertEqual(fun(3), 4)

As of Python 2.7 unittest also includes its own test discovery mechanisms.

Doctest

The doctest module searches for pieces of text that look like interactive Python sessions in docstrings, and then executes those sessions to verify that they work exactly as shown.

Doctests have a different use case than proper unit tests: they are usually less detailed and don’t catch special cases or obscure regression bugs. They are useful as an expressive documentation of the main use cases of a module and its components. However, doctests should run automatically each time the full test suite runs.

A simple doctest in a function:

def square(x):
    """Squares x.

    >>> square(2)
    4
    >>> square(-2)
    4
    """

    return x * x

if __name__ == '__main__':
    import doctest
    doctest.testmod()

When running this module from the command line as in python module.py, the doctests will run and complain if anything is not behaving as described in the docstrings.

Tools

py.test

py.test is a no-boilerplate alternative to Python’s standard unittest module.

$ pip install pytest

Despite being a fully-featured and extensible test tool, it boasts a simple syntax. Creating a test suite is as easy as writing a module with a couple of functions:

# content of test_sample.py
def func(x):
    return x + 1

def test_answer():
    assert func(3) == 5

and then running the py.test command

$ py.test
=========================== test session starts ============================
platform darwin -- Python 2.7.1 -- pytest-2.2.1
collecting ... collected 1 items

test_sample.py F

================================= FAILURES =================================
_______________________________ test_answer ________________________________

    def test_answer():
>       assert func(3) == 5
E       assert 4 == 5
E        +  where 4 = func(3)

test_sample.py:5: AssertionError
========================= 1 failed in 0.02 seconds =========================

is far less work than would be required for the equivalent functionality with the unittest module!

Nose

nose extends unittest to make testing easier.

$ pip install nose

nose provides automatic test discovery to save you the hassle of manually creating test suites. It also provides numerous plugins for features such as xUnit-compatible test output, coverage reporting, and test selection.

tox

tox is a tool for automating test environment management and testing against multiple interpreter configurations

$ pip install tox

tox allows you to configure complicated multi-parameter test matrices via a simple ini-style configuration file.

Unittest2

unittest2 is a backport of Python 2.7’s unittest module which has an improved API and better assertions over the one available in previous versions of Python.

If you’re using Python 2.6 or below, you can install it with pip

$ pip install unittest2

You may want to import the module under the name unittest to make porting code to newer versions of the module easier in the future

import unittest2 as unittest

class MyTest(unittest.TestCase):
    ...

This way if you ever switch to a newer Python version and no longer need the unittest2 module, you can simply change the import in your test module without the need to change any other code.

mock

unittest.mock is a library for testing in Python. As of Python 3.3, it is available in the standard library.

For older versions of Python:

$ pip install mock

It allows you to replace parts of your system under test with mock objects and make assertions about how they have been used.

For example, you can monkey-patch a method:

from mock import MagicMock
thing = ProductionClass()
thing.method = MagicMock(return_value=3)
thing.method(3, 4, 5, key='value')

thing.method.assert_called_with(3, 4, 5, key='value')

To mock classes or objects in a module under test, use the patch decorator. In the example below, an external search system is replaced with a mock that always returns the same result (but only for the duration of the test).

def mock_search(self):
    class MockSearchQuerySet(SearchQuerySet):
        def __iter__(self):
            return iter(["foo", "bar", "baz"])
    return MockSearchQuerySet()

# SearchForm here refers to the imported class reference in myapp,
# not where the SearchForm class itself is imported from
@mock.patch('myapp.SearchForm.search', mock_search)
def test_new_watchlist_activities(self):
    # get_search_results runs a search and iterates over the result
    self.assertEqual(len(myapp.get_search_results(q="fish")), 3)

Mock has many other ways you can configure it and control its behavior.

Python Guide.

This opinionated guide exists to provide both novice and expert Python developers a best-practice handbook to the installation, configuration, and usage of Python on a daily basis.

Get Updates

Receive updates on new releases and upcoming projects.

Subscribe to Newsletter

Donate

If you enjoy this guide, consider supporting the author on Gittip:

Table Of Contents

Related Topics

This Page

Fork me on GitHub